Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[3-(1*H*-Benzimidazol-2-yl)propyl]-1*H*benzimidazol-3-ium 3,5-dicarboxybenzoate-benzene-1,3,5-tricarboxylic acid-water (1/1/1)

Guo-dong Feng* and Luan Jiang

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: fengguodong00805@163.com

Received 11 September 2010; accepted 30 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.081; data-to-parameter ratio = 12.1.

The title compound, $C_{17}H_{17}N_4^+ \cdot C_9H_5O_6^- \cdot C_9H_6O_6 \cdot H_2O$, contains a protonated 2,2'-(1,3-propanediyl)bis(1*H*-benzimidazole) cation, a deprotonated benzene-1,3,5-tricarboxylic acid anion, a neutral benzene-1,3,5-tricarboxylic acid molecule and a water molecule, which are linked together through N– $H \cdot \cdot \cdot O$, $O-H \cdot \cdot \cdot O$ and weak $C-H \cdot \cdot \cdot O$ hydrogen bonds into almost double sheets parallel to (441). These hydrogenbonded sheets are packed in the crystal with the formation of centrosymmetric voids of 25.5 Å³, which are filled by the water molecules.

Related literature

For the coordination chemistry of bis-benzimidazoles, see: Sun *et al.* (2010). For the clinical applications of the benzimidazole ring system, see Harrell *et al.* (2004). For novel proton-transfer compounds, see Aghabozorg *et al.* (2008). For applications of benzimidazole and bis-benzimidazole compounds, see: Chang *et al.* (2008).

Experimental

Crystal data

 $C_{17}H_{17}N_4^{+} \cdot C_9H_5O_6^{-} \cdot C_9H_6O_6 \cdot H_2O$ $M_r = 714.63$ Triclinic, $P\overline{1}$ a = 8.7711 (3) Å b = 10.8389 (6) Å c = 17.2999 (9) Å $\alpha = 81.520 (5)^{\circ}$ $\beta = 84.131 (4)^{\circ}$

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.957, T_{\rm max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.081$ S = 1.075657 reflections 469 parameters $\begin{array}{l} \gamma = 86.998 \ (4)^{\circ} \\ V = 1617.02 \ (13) \ \text{\AA}^3 \\ Z = 2 \\ \text{Mo } K\alpha \ \text{radiation} \\ \mu = 0.11 \ \text{mm}^{-1} \\ T = 293 \ \text{K} \\ 0.4 \times 0.32 \times 0.2 \ \text{mm} \end{array}$

9922 measured reflections 5657 independent reflections 3630 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

3 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\min} = -0.22 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O10^{i}$	0.82	1.82	2.6404 (16)	178
O9−H9···O2 ⁱ	0.82	1.85	2.6682 (16)	177
$N1 - H1A \cdots O11$	0.86	1.84	2.6560 (17)	159
$N4 - H4A \cdots O3$	0.86	2.05	2.8435 (17)	153
C1−H221···O10	0.93	2.51	3.414 (2)	163
$C9-H9A\cdots O5^{ii}$	0.97	2.44	3.346 (2)	156

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y + 1, z.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Foundation for Young Teachers of Baoji University of Arts and Science (grant No. ZK09135).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2041).

References

- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, C. M., Kulkarni, M. V., Chen, C. H., Wang, C. & Sun, C. M. (2008). J. Comb. Chem. 10, 466–474.
- Harrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646–15647.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058.

Acta Cryst. (2010). E66, o2731 [doi:10.1107/S1600536810039139]

2-[3-(1*H*-Benzimidazol-2-yl)propyl]-1*H*-benzimidazol-3-ium 3,5-dicarboxybenzoate-benzene-1,3,5-tricarboxylic acid-water (1/1/1)

G. Feng and L. Jiang

Comment

Bis-benzimidazoles are known to be strong chelating agents coordinating through both of the C=N group nitrogen atoms (Sun *et al.*, 2010). Recently, The benzimidazole ring system is present in clinically approved anthelmintics, antiulcers, antivirals, and antihistamines (Harrell, *et al.*, 2004).

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg *et al.*, 2008). In this work, we report a new proton transfer compound obtained from benzene-1,3,5-tricarboxylic acid as a proton donor and bis-benzimidazoles as an acceptor.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups of the benzene-1,3,5-tricarboxylic acids was transferred to the N-ring atom of benzimidazoles. On the other hand, an interesting feature exhibited by the crystal structure is that just one benzene-1,3,5-tricarboxylic acids as a proton donor and another benzene-1,3,5-tricarboxylic acids is in an un-ionized state. The two benzene-1,3,5-tricarboxylic acids are parallel. In the crystal structure, intermolecular N—H···O,O—H···O and weak C—H···O hydrogen bonds (Table 1) link cations and anions into double-planar parallel to the (4,-4,-1) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 25.5 Å3, which are filled by the disordered water molecules.

Experimental

The compound was prepared by a hydrothermal method. A mixture of 2,2'-(1,3-propanediyl)bis(1*H*-benzimidazole)(0.5 mmol), benzene-1,3,5-tricarboxylic acid (0.6 mmol),and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals were obtained after cooling to room temperature.

Refinement

All H atoms were placed in calculated positions and refined in a riding-model approximation with; C—H = 0.95–0.99 Å, N—H = 0.88 Å, O—H = 0.83–0.85Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ or $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figures

Fig. 1. The structure of the title compound in 50% probability ellipsoids. The O—H···O hydrogen bonds link the two benzene-1,3,5-tricarboxylic acids- units and N—H···O and weak C—H···O hydrogen bonds link bis-benzimidazoles cations to these chains.

Fig. 2. A view along the c axis of the crystal packing of the title compound.

2-[1-(1*H*-Benzimidazol-2-yl)propyl]-1*H*-benzimidazol-3-ium 3,5-dicarboxybenzoate-benzene-1,3,5-tricarboxyl-ic acid-water (1/1/1)

Crystal data

$C_{17}H_{17}N_4^{\ +}\cdot C_9H_5O_6^{\ -}\cdot C_9H_6O_6\cdot H_2O$	Z = 2
$M_r = 714.63$	F(000) = 744
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.468 {\rm Mg m}^{-3}$
a = 8.7711 (3) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.8389 (6) Å	Cell parameters from 165 reflections
c = 17.2999 (9) Å	$\theta = 2.8 - 23.6^{\circ}$
$\alpha = 81.520 \ (5)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 84.131 \ (4)^{\circ}$	T = 293 K
$\gamma = 86.998 \ (4)^{\circ}$	Block, colorless
$V = 1617.02 (13) \text{ Å}^3$	$0.4 \times 0.32 \times 0.2 \text{ mm}$

Data collection

Bruker APEX CCD area-detector diffractometer	5657 independent reflections
Radiation source: fine-focus sealed tube	3630 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 9$
$T_{\min} = 0.957, T_{\max} = 0.977$	$k = -12 \rightarrow 12$
9922 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.081$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0349P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5657 reflections	$(\Delta/\sigma)_{max} < 0.001$
469 parameters	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$

3 restraints

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9366 (2)	0.70532 (19)	0.12984 (12)	0.0472 (5)
H221	0.8725	0.6395	0.1302	0.057*
C2	0.9969 (2)	0.7728 (2)	0.06116 (13)	0.0597 (6)
H222	0.9733	0.7522	0.0136	0.072*
C3	1.0926 (2)	0.8712 (2)	0.06101 (13)	0.0651 (7)
H223	1.1301	0.9150	0.0131	0.078*
C4	1.1335 (2)	0.9060 (2)	0.12862 (13)	0.0542 (6)
H224	1.1979	0.9716	0.1281	0.065*
C5	1.07310 (18)	0.83745 (17)	0.19804 (11)	0.0372 (5)
C6	0.97641 (18)	0.74056 (16)	0.19828 (11)	0.0341 (4)
C7	0.99913 (18)	0.76278 (17)	0.32189 (11)	0.0355 (4)
C8	0.9711 (2)	0.74754 (18)	0.40866 (11)	0.0433 (5)
H8A	1.0687	0.7459	0.4307	0.052*
H8B	0.9248	0.6679	0.4271	0.052*
С9	0.8672 (2)	0.85092 (18)	0.43867 (11)	0.0428 (5)
H9A	0.9056	0.9307	0.4135	0.051*
H9B	0.8744	0.8465	0.4946	0.051*
C10	0.6983 (2)	0.8473 (2)	0.42501 (10)	0.0458 (5)
H10A	0.6598	0.7672	0.4496	0.055*
H10B	0.6412	0.9114	0.4508	0.055*
C11	0.66781 (17)	0.86607 (16)	0.34136 (10)	0.0325 (4)
C12	0.57954 (18)	0.83069 (16)	0.23153 (10)	0.0332 (4)
C13	0.5143 (2)	0.7843 (2)	0.17270 (12)	0.0523 (6)
H13	0.4556	0.7137	0.1832	0.063*
C14	0.5407 (2)	0.8473 (2)	0.09827 (13)	0.0579 (6)
H14	0.4997	0.8184	0.0571	0.069*
C15	0.6273 (2)	0.9538 (2)	0.08258 (11)	0.0501 (5)
H15	0.6404	0.9955	0.0315	0.060*
C16	0.69382 (19)	0.99856 (17)	0.14092 (10)	0.0376 (5)
H16	0.7530	1.0689	0.1302	0.045*
C17	0.66929 (17)	0.93482 (15)	0.21629 (10)	0.0278 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C18	0.46437 (16)	0.20168 (15)	0.29690 (9)	0.0248 (4)
C19	0.49709 (17)	0.24146 (15)	0.21723 (9)	0.0283 (4)
H19	0.4573	0.2003	0.1807	0.034*
C20	0.58961 (18)	0.34311 (16)	0.19206 (9)	0.0295 (4)
C21	0.64414 (18)	0.40664 (16)	0.24701 (9)	0.0303 (4)
H21	0.7039	0.4756	0.2300	0.036*
C22	0.61089 (17)	0.36895 (15)	0.32672 (9)	0.0260 (4)
C23	0.52217 (17)	0.26558 (15)	0.35086 (9)	0.0273 (4)
H23	0.5009	0.2384	0.4042	0.033*
C24	0.37076 (18)	0.08932 (16)	0.32472 (10)	0.0288 (4)
C25	0.6362 (2)	0.38696 (18)	0.10842 (10)	0.0380 (5)
C26	0.67101 (18)	0.43956 (16)	0.38498 (10)	0.0298 (4)
C27	0.18279 (17)	0.44108 (16)	0.18951 (9)	0.0294 (4)
C28	0.08562 (18)	0.34199 (16)	0.21251 (10)	0.0315 (4)
H28	0.0461	0.3032	0.1748	0.038*
C29	0.04780 (17)	0.30111 (15)	0.29153 (9)	0.0278 (4)
C30	0.10540 (17)	0.36020 (15)	0.34742 (9)	0.0282 (4)
H30	0.0790	0.3333	0.4004	0.034*
C31	0.20262 (17)	0.45961 (15)	0.32504 (9)	0.0248 (4)
C32	0.23957 (17)	0.49858 (15)	0.24616 (10)	0.0294 (4)
H32	0.3041	0.5650	0.2307	0.035*
C33	0.2313 (2)	0.48724 (17)	0.10617 (10)	0.0380 (5)
C34	-0.05308 (18)	0.19177 (16)	0.31858 (10)	0.0325 (4)
C35	0.27119 (17)	0.52423 (16)	0.38307 (10)	0.0287 (4)
N1	0.93470 (15)	0.69651 (13)	0.27654 (8)	0.0348 (4)
H1A	0.8758	0.6353	0.2931	0.042*
N2	1.08535 (15)	0.84712 (14)	0.27610 (9)	0.0402 (4)
H2A	1.1402	0.8996	0.2925	0.048*
N3	0.72286 (14)	0.95552 (13)	0.28622 (8)	0.0305 (3)
N4	0.57988 (15)	0.79119 (14)	0.31099 (9)	0.0375 (4)
H4A	0.5316	0.7288	0.3369	0.045*
01	0.16654 (16)	0.43594 (14)	0.05506 (7)	0.0646 (5)
H1	0.1992	0.4662	0.0106	0.097*
O2	0.32635 (14)	0.56827 (13)	0.08772 (7)	0.0491 (4)
O3	0.34628 (14)	0.61690 (12)	0.36169 (7)	0.0446 (3)
O4	0.24293 (14)	0.47490 (11)	0.45530 (7)	0.0460 (4)
H4	0.2837	0.5149	0.4837	0.069*
O5	-0.08461 (16)	0.15746 (13)	0.38823 (7)	0.0574 (4)
O6	-0.09809 (13)	0.14016 (12)	0.26303 (7)	0.0464 (4)
H6	-0.1521	0.0816	0.2819	0.070*
07	0.37661 (14)	0.05198 (12)	0.40002 (7)	0.0461 (4)
H7	0.3245	-0.0096	0.4136	0.069*
O8	0.30023 (13)	0.03803 (12)	0.28260 (7)	0.0425 (3)
09	0.57854 (15)	0.32907 (13)	0.05788 (7)	0.0555 (4)
Н9	0.6104	0.3591	0.0132	0.083*
O10	0.72506 (17)	0.47175 (14)	0.08869 (7)	0.0657 (5)
011	0.74251 (14)	0.53540 (12)	0.36033 (7)	0.0474 (4)
012	0.64331 (14)	0.39760 (11)	0.45685 (7)	0.0428 (3)
O1W	0.27197 (15)	0.84782 (13)	0.47477 (8)	0.0601 (4)

H2	0.2094	0.8558	0.5152	0.090*
Н3	0.3126	0.7750	0.4838	0.090*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0492 (11)	0.0476 (13)	0.0471 (13)	-0.0132 (10)	0.0003 (10)	-0.0137 (11)
C2	0.0618 (13)	0.0745 (17)	0.0432 (13)	-0.0145 (12)	0.0032 (11)	-0.0119 (12)
C3	0.0638 (14)	0.0800 (19)	0.0451 (14)	-0.0162 (13)	0.0106 (12)	0.0061 (13)
C4	0.0456 (12)	0.0538 (15)	0.0588 (15)	-0.0215 (10)	0.0096 (11)	0.0035 (12)
C5	0.0306 (9)	0.0390 (12)	0.0417 (12)	-0.0072 (8)	-0.0007 (8)	-0.0050 (9)
C6	0.0307 (9)	0.0310 (11)	0.0399 (11)	-0.0049 (8)	0.0011 (8)	-0.0046 (9)
C7	0.0315 (9)	0.0315 (11)	0.0436 (12)	-0.0020 (8)	-0.0067 (9)	-0.0036 (9)
C8	0.0480 (11)	0.0414 (12)	0.0416 (12)	-0.0058 (9)	-0.0133 (9)	-0.0020 (10)
C9	0.0619 (12)	0.0398 (12)	0.0281 (10)	-0.0050 (9)	-0.0125 (9)	-0.0035 (9)
C10	0.0516 (12)	0.0543 (14)	0.0297 (11)	-0.0072 (10)	0.0017 (9)	-0.0022 (10)
C11	0.0299 (9)	0.0319 (11)	0.0340 (10)	-0.0047 (8)	0.0019 (8)	-0.0018 (9)
C12	0.0310 (9)	0.0316 (11)	0.0363 (11)	-0.0096 (8)	-0.0026 (8)	-0.0001 (9)
C13	0.0524 (12)	0.0532 (14)	0.0553 (14)	-0.0302 (10)	-0.0108 (11)	-0.0065 (12)
C14	0.0576 (13)	0.0755 (17)	0.0466 (14)	-0.0257 (12)	-0.0172 (11)	-0.0122 (12)
C15	0.0509 (11)	0.0655 (15)	0.0343 (11)	-0.0164 (11)	-0.0110 (10)	0.0019 (11)
C16	0.0383 (10)	0.0351 (11)	0.0385 (11)	-0.0128 (8)	-0.0038 (9)	0.0022 (9)
C17	0.0280 (9)	0.0264 (10)	0.0296 (10)	-0.0052 (7)	-0.0048 (8)	-0.0030 (8)
C18	0.0283 (9)	0.0249 (10)	0.0211 (9)	-0.0041 (7)	-0.0012 (7)	-0.0029 (7)
C19	0.0336 (9)	0.0290 (10)	0.0243 (10)	-0.0061 (7)	-0.0041 (7)	-0.0080 (8)
C20	0.0372 (9)	0.0306 (10)	0.0208 (9)	-0.0097 (8)	-0.0005 (8)	-0.0026 (8)
C21	0.0360 (9)	0.0295 (10)	0.0251 (10)	-0.0127 (8)	-0.0005 (8)	-0.0007 (8)
C22	0.0310 (9)	0.0263 (10)	0.0213 (9)	-0.0068 (7)	-0.0019 (7)	-0.0033 (8)
C23	0.0334 (9)	0.0280 (10)	0.0203 (9)	-0.0058 (7)	-0.0021 (7)	-0.0017 (8)
C24	0.0326 (9)	0.0288 (10)	0.0251 (10)	-0.0064 (8)	0.0020 (8)	-0.0058 (8)
C25	0.0524 (11)	0.0419 (12)	0.0214 (10)	-0.0198 (9)	-0.0023 (9)	-0.0046 (9)
C26	0.0371 (9)	0.0282 (11)	0.0249 (10)	-0.0097 (8)	-0.0030 (8)	-0.0036 (8)
C27	0.0352 (9)	0.0312 (11)	0.0215 (9)	-0.0090 (8)	-0.0015 (8)	-0.0009 (8)
C28	0.0362 (9)	0.0338 (11)	0.0262 (10)	-0.0100 (8)	-0.0049 (8)	-0.0061 (8)
C29	0.0314 (9)	0.0278 (10)	0.0240 (9)	-0.0078 (7)	-0.0036 (7)	-0.0005 (8)
C30	0.0335 (9)	0.0283 (10)	0.0219 (9)	-0.0067 (7)	-0.0011 (7)	0.0003 (8)
C31	0.0289 (8)	0.0228 (10)	0.0229 (9)	-0.0049 (7)	-0.0030(7)	-0.0026 (7)
C32	0.0348 (9)	0.0261 (10)	0.0267 (10)	-0.0121 (8)	-0.0005 (8)	0.0008 (8)
C33	0.0493 (11)	0.0399 (12)	0.0260 (10)	-0.0186 (9)	0.0004 (9)	-0.0050 (9)
C34	0.0348 (10)	0.0315 (11)	0.0327 (12)	-0.0121 (8)	-0.0051 (8)	-0.0041 (9)
C35	0.0325 (9)	0.0283 (10)	0.0252 (10)	-0.0069 (8)	-0.0006 (8)	-0.0029 (8)
N1	0.0359 (8)	0.0276 (9)	0.0409 (10)	-0.0117 (7)	-0.0010 (7)	-0.0031 (7)
N2	0.0348 (8)	0.0367 (10)	0.0515 (11)	-0.0159 (7)	-0.0061 (7)	-0.0071 (8)
N3	0.0339 (8)	0.0300 (9)	0.0275 (8)	-0.0087 (6)	-0.0005 (6)	-0.0022 (7)
N4	0.0376 (8)	0.0312 (9)	0.0417 (10)	-0.0166 (7)	0.0004 (7)	0.0035 (7)
01	0.0948 (11)	0.0814 (11)	0.0217 (7)	-0.0564 (9)	-0.0007 (7)	-0.0055 (7)
02	0.0662 (8)	0.0569 (9)	0.0247 (7)	-0.0361 (7)	0.0015 (6)	0.0000 (6)
03	0.0600 (8)	0.0431 (8)	0.0326 (7)	-0.0306 (7)	-0.0048 (6)	-0.0016 (6)

O4	0.0741 (9)	0.0448 (9)	0.0225 (7)	-0.0326 (7)	-0.0075 (6)	-0.0034 (6)
O5	0.0845 (10)	0.0606 (10)	0.0279 (8)	-0.0454 (8)	0.0000 (7)	0.0023 (7)
O6	0.0582 (8)	0.0465 (9)	0.0372 (8)	-0.0322 (7)	-0.0033 (6)	-0.0048 (7)
O7	0.0704 (9)	0.0426 (8)	0.0260 (7)	-0.0324 (7)	-0.0022 (6)	0.0016 (6)
O8	0.0525 (7)	0.0419 (8)	0.0363 (7)	-0.0251 (6)	-0.0087 (6)	-0.0050 (6)
O9	0.0903 (10)	0.0597 (10)	0.0190 (7)	-0.0410 (8)	-0.0007 (7)	-0.0041 (7)
O10	0.0969 (11)	0.0798 (11)	0.0235 (7)	-0.0626 (9)	0.0040 (7)	-0.0039(7)
O11	0.0700 (9)	0.0423 (8)	0.0329 (7)	-0.0348 (7)	-0.0027 (6)	-0.0049 (6)
O12	0.0710 (8)	0.0401 (8)	0.0200 (7)	-0.0265 (7)	-0.0052 (6)	-0.0040 (6)
O1W	0.0641 (8)	0.0412 (9)	0.0669 (10)	-0.0139 (7)	0.0056 (7)	0.0145 (7)

Geometric parameters (Å, °)

C1—C2	1.372 (3)	C19—H19	0.9300
C1—C6	1.379 (2)	C20—C21	1.388 (2)
C1—H221	0.9300	C20—C25	1.478 (2)
C2—C3	1.391 (3)	C21—C22	1.385 (2)
С2—Н222	0.9300	C21—H21	0.9300
C3—C4	1.367 (3)	C22—C23	1.386 (2)
С3—Н223	0.9300	C22—C26	1.503 (2)
C4—C5	1.386 (3)	С23—Н23	0.9300
С4—Н224	0.9300	C24—O8	1.2127 (19)
C5—N2	1.385 (2)	C24—O7	1.311 (2)
C5—C6	1.383 (2)	C25—O10	1.2232 (19)
C6—N1	1.386 (2)	C25—O9	1.304 (2)
C7—N1	1.323 (2)	C26—O11	1.2399 (19)
C7—N2	1.331 (2)	C26—O12	1.2628 (19)
С7—С8	1.482 (3)	C27—C32	1.382 (2)
С8—С9	1.524 (2)	C27—C28	1.392 (2)
C8—H8A	0.9700	C27—C33	1.481 (2)
C8—H8B	0.9700	C28—C29	1.385 (2)
C9—C10	1.528 (2)	C28—H28	0.9300
С9—Н9А	0.9700	C29—C30	1.384 (2)
С9—Н9В	0.9700	C29—C34	1.506 (2)
C10—C11	1.481 (2)	C30—C31	1.394 (2)
C10—H10A	0.9700	С30—Н30	0.9300
C10—H10B	0.9700	C31—C32	1.378 (2)
C11—N3	1.329 (2)	C31—C35	1.495 (2)
C11—N4	1.343 (2)	С32—Н32	0.9300
C12—N4	1.378 (2)	C33—O2	1.2277 (19)
C12—C13	1.384 (2)	C33—O1	1.302 (2)
C12—C17	1.388 (2)	C34—O5	1.215 (2)
C13—C14	1.369 (3)	C34—O6	1.2853 (19)
С13—Н13	0.9300	C35—O3	1.2204 (18)
C14—C15	1.393 (3)	C35—O4	1.2893 (19)
C14—H14	0.9300	N1—H1A	0.8600
C15—C16	1.374 (2)	N2—H2A	0.8600
С15—Н15	0.9300	N4—H4A	0.8600
C16—C17	1.384 (2)	O1—H1	0.8200

C16—H16	0.9300	O4—H4	0.8200
C17—N3	1.394 (2)	O6—H6	0.8200
C18—C19	1.387 (2)	O7—H7	0.8200
C18—C23	1.390 (2)	О9—Н9	0.8200
C18—C24	1.497 (2)	O1W—H2	0.8561
C19—C20	1.394 (2)	O1W—H3	0.8490
C2—C1—C6	116.25 (18)	С20—С19—Н19	120.0
C2—C1—H221	121.9	C21—C20—C19	119.67 (15)
C6—C1—H221	121.9	C21—C20—C25	117.19 (14)
C1—C2—C3	121.6 (2)	C19—C20—C25	123.13 (14)
C1—C2—H222	119.2	C22—C21—C20	121.04 (14)
C3—C2—H222	119.2	C22—C21—H21	119.5
C4—C3—C2	122.5 (2)	C20—C21—H21	119.5
C4—C3—H223	118.8	C23—C22—C21	118.60 (15)
С2—С3—Н223	118.8	C23—C22—C26	121.43 (15)
C3—C4—C5	115.98 (18)	C21—C22—C26	119.98 (14)
C3—C4—H224	122.0	C22—C23—C18	121.36 (15)
C5—C4—H224	122.0	С22—С23—Н23	119.3
C4—C5—N2	132.23 (17)	C18—C23—H23	119.3
C4—C5—C6	121.61 (18)	O8—C24—O7	124.20 (15)
N2—C5—C6	106.13 (15)	O8—C24—C18	124.19 (16)
C1—C6—N1	131.79 (16)	O7—C24—C18	111.60 (14)
C1—C6—C5	122.11 (17)	O10—C25—O9	122.68 (15)
N1—C6—C5	106.09 (15)	O10—C25—C20	121.29 (15)
N1—C7—N2	108.36 (16)	O9—C25—C20	116.02 (14)
N1—C7—C8	124.59 (16)	O11—C26—O12	123.93 (15)
N2—C7—C8	126.98 (17)	O11—C26—C22	118.80 (15)
C7—C8—C9	113.30 (16)	O12—C26—C22	117.27 (14)
С7—С8—Н8А	108.9	C32—C27—C28	119.36 (15)
С9—С8—Н8А	108.9	C32—C27—C33	117.75 (14)
С7—С8—Н8В	108.9	C28—C27—C33	122.88 (15)
С9—С8—Н8В	108.9	C29—C28—C27	120.05 (15)
H8A—C8—H8B	107.7	С29—С28—Н28	120.0
C8—C9—C10	115.43 (15)	С27—С28—Н28	120.0
С8—С9—Н9А	108.4	C30—C29—C28	119.73 (14)
С10—С9—Н9А	108.4	C30—C29—C34	118.75 (15)
С8—С9—Н9В	108.4	C28—C29—C34	121.51 (15)
С10—С9—Н9В	108.4	C29—C30—C31	120.69 (15)
Н9А—С9—Н9В	107.5	С29—С30—Н30	119.7
C11—C10—C9	114.59 (14)	С31—С30—Н30	119.7
C11—C10—H10A	108.6	C32—C31—C30	118.75 (14)
C9—C10—H10A	108.6	C32—C31—C35	118.50 (13)
C11—C10—H10B	108.6	C30—C31—C35	122.74 (14)
C9—C10—H10B	108.6	C27—C32—C31	121.41 (14)
H10A—C10—H10B	107.6	С27—С32—Н32	119.3
N3-C11-N4	110.65 (15)	С31—С32—Н32	119.3
N3—C11—C10	126.11 (16)	O2—C33—O1	123.21 (16)
N4—C11—C10	123.23 (15)	O2—C33—C27	121.45 (15)
N4-C12-C13	132.57 (16)	O1—C33—C27	115.34 (14)

N4 C12 C17	105 20 (15)	05 C24 O6	124 00 (15)
N4 - C12 - C17	103.30(13)	05 624 620	124.88 (13)
	122.10(17)	05-034-029	120.36 (15)
C14—C13—C12	116.70(17)	06-034-029	114.75 (15)
C14—C13—H13	121.6	03 - 03 - 04	124.28 (15)
C12—C13—H13	121.6	03-035-031	120.99 (15)
C13	121./1 (19)	04-035-031	114./3 (14)
С13—С14—Н14	119.1	C/—NI—C6	109.82 (14)
C15—C14—H14	119.1	C7—N1—H1A	125.1
C16—C15—C14	121.43 (19)	C6—N1—H1A	125.1
C16—C15—H15	119.3	C7—N2—C5	109.58 (15)
C14—C15—H15	119.3	C7—N2—H2A	125.2
C15—C16—C17	117.37 (16)	C5—N2—H2A	125.2
C15-C16-H16	121.3	C11—N3—C17	106.47 (13)
C17—C16—H16	121.3	C11—N4—C12	108.91 (13)
C16—C17—C12	120.65 (15)	C11—N4—H4A	125.5
C16—C17—N3	130.69 (14)	C12—N4—H4A	125.5
C12—C17—N3	108.65 (14)	C33—O1—H1	109.5
C19—C18—C23	119.38 (14)	С35—О4—Н4	109.5
C19—C18—C24	120.47 (14)	С34—О6—Н6	109.5
C23—C18—C24	120.14 (15)	С24—О7—Н7	109.5
C18—C19—C20	119.91 (15)	С25—О9—Н9	109.5
C18—C19—H19	120.0	H2—O1W—H3	105.4
C6-C1-C2-C3	-0.1(3)	C21—C20—C25—O9	-177 31 (16)
$C_1 - C_2 - C_3 - C_4$	0.7 (4)	$C_{19} = C_{20} = C_{25} = C_{9}$	37(3)
$C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}$	-0.3(3)	C^{23} C^{22} C^{26} C^{26} C^{11}	-176.01(16)
$C_2 = C_3 = C_4 = C_5 = N_2^2$	-178 11 (19)	$C_{23} - C_{22} - C_{20} - O_{11}$	170.01 (10)
$C_{3} = C_{4} = C_{5} = C_{6}$	-0.5(3)	$C_{21} = C_{22} = C_{20} = 011$	4.1(2)
$C_{2} = C_{4} = C_{5} = C_{6}$	-0.3(3)	$C_{23} = C_{22} = C_{20} = 012$	-17672(17)
$C_2 = C_1 = C_0 = N_1$	178.2(2)	$C_{21} = C_{22} = C_{20} = C_{12}$	-1/0.72(17)
$C_2 = C_1 = C_6 = C_5$	-0.7(3)	$C_{32} = C_{27} = C_{28} = C_{29}$	-0.6(3)
C4 - C5 - C6 - C1	1.1 (3)	$C_{33} = C_{27} = C_{28} = C_{29}$	1/8.20 (1/)
$N_2 - C_5 - C_6 - C_1$	1/9.23 (16)	$C_2/-C_{28}-C_{29}-C_{30}$	0.8 (3)
C4—C5—C6—N1	-1/8.06(1/)	$C_2/-C_{28}-C_{29}-C_{34}$	-1/8.12(15)
N2-C5-C6-N1	0.1 (2)	C28—C29—C30—C31	-0.7 (2)
N1—C7—C8—C9	-104.6 (2)	C34—C29—C30—C31	178.24 (15)
N2—C7—C8—C9	72.0 (2)	C29—C30—C31—C32	0.4 (2)
C7—C8—C9—C10	72.0 (2)	C29—C30—C31—C35	-178.30 (15)
C8—C9—C10—C11	-64.1 (2)	C28—C27—C32—C31	0.3 (3)
C9—C10—C11—N3	-48.0 (3)	C33—C27—C32—C31	-178.63 (16)
C9—C10—C11—N4	131.08 (18)	C30—C31—C32—C27	-0.2 (3)
N4—C12—C13—C14	-178.6 (2)	C35—C31—C32—C27	178.58 (15)
C17-C12-C13-C14	-1.0 (3)	C32—C27—C33—O2	4.6 (3)
C12-C13-C14-C15	-0.7 (3)	C28—C27—C33—O2	-174.27 (18)
C13-C14-C15-C16	1.8 (3)	C32—C27—C33—O1	-175.43 (17)
C14—C15—C16—C17	-1.0 (3)	C28—C27—C33—O1	5.7 (3)
C15-C16-C17-C12	-0.6 (3)	C30—C29—C34—O5	1.0 (3)
C15-C16-C17-N3	178.61 (17)	C28—C29—C34—O5	179.92 (18)
N4—C12—C17—C16	179.87 (16)	C30—C29—C34—O6	-178.12 (15)
C13—C12—C17—C16	1.7 (3)	C28—C29—C34—O6	0.8 (2)
N4—C12—C17—N3	0.49 (18)	C32—C31—C35—O3	6.9 (2)
	N 2		· · ·

C13-C12-C17-N3	-177.72 (16)	C30—C31—C35—O3	-174.34 (16)
C23-C18-C19-C20	1.2 (2)	C32—C31—C35—O4	-173.69 (16)
C24—C18—C19—C20	-177.37 (15)	C30—C31—C35—O4	5.0 (2)
C18-C19-C20-C21	-2.2 (3)	N2-C7-N1-C6	-1.6 (2)
C18—C19—C20—C25	176.72 (17)	C8—C7—N1—C6	175.51 (17)
C19—C20—C21—C22	1.4 (3)	C1—C6—N1—C7	-178.09 (19)
C25—C20—C21—C22	-177.55 (17)	C5—C6—N1—C7	0.9 (2)
C20—C21—C22—C23	0.3 (3)	N1	1.7 (2)
C20—C21—C22—C26	-179.84 (15)	C8—C7—N2—C5	-175.36 (17)
C21—C22—C23—C18	-1.3 (2)	C4—C5—N2—C7	176.8 (2)
C26—C22—C23—C18	178.84 (15)	C6—C5—N2—C7	-1.1 (2)
C19—C18—C23—C22	0.5 (2)	N4—C11—N3—C17	-1.25 (19)
C24—C18—C23—C22	179.15 (15)	C10-C11-N3-C17	177.92 (16)
C19—C18—C24—O8	-11.2 (3)	C16-C17-N3-C11	-178.86 (18)
C23—C18—C24—O8	170.21 (16)	C12-C17-N3-C11	0.44 (18)
C19—C18—C24—O7	167.73 (15)	N3—C11—N4—C12	1.6 (2)
C23—C18—C24—O7	-10.9 (2)	C10-C11-N4-C12	-177.60 (16)
C21—C20—C25—O10	3.5 (3)	C13—C12—N4—C11	176.7 (2)
C19—C20—C25—O10	-175.51 (18)	C17—C12—N4—C11	-1.24 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1···O10 ⁱ	0.82	1.82	2.6404 (16)	178
O9—H9…O2 ⁱ	0.82	1.85	2.6682 (16)	177
N1—H1A…O11	0.86	1.84	2.6560 (17)	159
N4—H4A···O3	0.86	2.05	2.8435 (17)	153
C1—H221…O10	0.93	2.51	3.414 (2)	163
C9—H9A···O5 ⁱⁱ	0.97	2.44	3.346 (2)	156

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*+1, *y*+1, *z*.

